
Splicing Community Patterns and Smells: A Preliminary Study
Manuel De Stefano

m.destefano36@studenti.unisa.it
SeSa Lab

University of Salerno, Italy

Fabiano Pecorelli
fpecorelli@unisa.it

SeSa Lab
University of Salerno, Italy

Damian A. Tamburri
d.a.tamburri@tue.nl

Jheronimus Academy of Data Science
The Netherlands

Fabio Palomba
fpalomba@unisa.it

SeSa Lab
University of Salerno, Italy

Andrea De Lucia
adelucia@unisa.it

SeSa Lab
University of Salerno, Italy

ABSTRACT
Software engineering projects are nowmore than ever a community
effort. In the recent past, researchers have shown that their success
may not only depend on source code quality, but also on other
aspects like the balance of distance, culture, global engineering
practices, and more. In such a scenario, understanding the charac-
teristics of the community around a project and foresee possible
problems may be the key to develop successful systems. In this pa-
per, we focus on this research problem and propose an exploratory
study on the relation between community patterns, i.e., recurrent
mixes of organizational or social structure types, and smells, i.e.,
sub-optimal patterns across the organizational structure of a soft-
ware development community that may be precursors of some sort
of social debt. We exploit association rule mining to discover fre-
quent relations between them. Our findings show that different
organizational patterns are connected to different forms of socio-
technical problems, possibly suggesting that practitioners should
put in place specific preventive actions aimed at avoiding the emer-
gence of community smells depending on the organization of the
project.

CCS CONCEPTS
• Software and its engineering→ Programming teams;

KEYWORDS
Community patterns; Community smells; Empirical studies.

ACM Reference Format:
Manuel De Stefano, Fabiano Pecorelli, Damian A. Tamburri, Fabio Palomba,
and Andrea De Lucia. 2018. Splicing Community Patterns and Smells: A
Preliminary Study. In Proceedings of ACM Conference (Conference’17). ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/1122445.1122456

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Software is increasingly being developed by globally-distributed
communities having complex social networks of software develop-
ment [42]. Over the last years, researchers have been investigating
the impact of such complex social networks on the sustainability of
open- and closed-source communities as well as source code qual-
ity, finding them to be a highly relevant factor for the success of
software systems [7, 27, 32, 37, 44]. As an example, Kwan et al. [27]
showed that the alignment between social and technical structure
of the community, i.e., the so-called socio-technical congruence [8],
has an effect on the build success, while Palomba et al. [32] found
that community-related factors can increase the criticality of source
code quality issues. As such, studying software communities does
not only represent a way to understand and learn how to reduce so-
cial debt, i.e., the unforeseen cost given by a wrong management of
the communication/coordination between developers [38], but also
to possibly improve the overall quality of the technical products
being developed [27, 32].

In recent work, Tamburri et al. [42] elicited a set of commu-
nity patterns, namely common governance mechanisms adopted by
open-source practitioners to manage the community, showing that
each pattern has its own characteristics and peculiarities [10]. On
the other hand, Tamburri et al. [37, 44] also explored the dark-side
of software communities and described a set of sub-optimal organi-
zational structures that lead to the emergence of both social and
technical debt, which have been named as community smells.

While researchers are studying community patterns and smells
in isolation, for instance by assessing how community smells mani-
fest themselves and can be mitigated [11, 12], there is still a lack
of knowledge on the joint relationship between community pat-
terns and smells. An improved understanding of such a relation
is important to reveal whether and to what extent certain gover-
nance mechanisms are more incline to incite the emergence of
community smells. Such understanding would allow researchers
to further investigate the problem, possibly proposing monitoring
and/or remediation strategies.

In this paper, we start tackling this lack of knowledge and pro-
pose an exploratory empirical study on how community patterns
relate to community smells. By mining data from 25 open-source
communities, we first exploit association rule learning [1] with
the aim of discovering frequent co-occurrences between the two
phenomena of interest, and then reason on the rationale behind the
observed relations. Key findings of our study show that different

Conference’17, July 2017, Washington, DC, USA De Stefano et al.

community patterns relate to different smells, highlighting that the
governance mechanisms which are put in place may potentially
have consequences in terms of social debt.

Our results have implications for both researchers and practi-
tioners. Based on our findings, the former can further analyze the
dynamics behind community patterns and how various known
and established governance mechanisms lead to socio-technical
issues or whether novel mechanisms are required for specific op-
erational conditions. The latter, instead, can exploit our results
to understand what are the risks associated with the community
pattern(s) currently in place in their projects and take preventive
actions for business continuity perhaps focusing on working out
the aforementioned novel governance patterns and practices.

Structure of the paper. Section 2 overviews the design of the
exploratory study, while Section 3 presents the achieved results and
discusses them. The potential limitations of the study are reported
in Section 4. Section 5 discusses the literature related to community
patterns and smells. Finally, Section 6 concludes the paper and
presents our future research agenda.

2 EMPIRICAL STUDY DESIGN
The goal of our empirical study is to investigate the relation between
community patterns and smells, with the purpose of understanding
whether the structural organization of a communitymay potentially
lead to some sort of social debt. The perspective is of both researchers
and practitioners, who are interested in discovering the potential
impact of organizational patterns on the emergence of community
smells.

More specifically, the empirical study is driven by the following
research question (RQ):

RQ.What is the relation between community patterns and com-
munity smells?

In the following sections, we describe the context of the study as
well as the data collection and analysis required to address our RQ.

2.1 Context of the Study
The context of our empirical study was composed of (1) projects,
(2) community patterns, and (3) community smells.

Projects. We considered 25 open source software communities
coming from the GitHub repository, sampled according to guide-
lines from the state of the art [15] and refined applying best-practice
sampling criteria [26]. In particular, from the initial list of 81,327,803
open-source projects available in the repository, we first excluded
systems having less that 10 contributors: such a filter was required
to gather projects built by an actual community of developers. Then,
we excluded systems with less that 100 commits, so that we could
rely on a decent amount of information to study how developers
collaborate with each other—this is required to accurately detect
community smells, as explained later in the paper. Finally, we took
into account systems having at least 50 KLOCs with the aim of
studying medium to large projects. Applying these filters, we came
up with a total of 44,387,266 projects. For computational constraints,
we randomly selected 25 of them.

Table 1: Basic characteristics of the software project commu-
nities considered in our study—domain taxonomy tailored
from literature [6].

Name # Rel. # Commits # Contributors #KLOC Domain

Netty 164 8,123 258 438 Software Tools
Android 3 132 14 382 Library
Arduino 74 6,516 210 192 Electronics prototyping platform
Bootstrap 55 2,067 389 378 Web libraries and frameworks
Boto 86 7,111 495 56 Web libraries and frameworks
Bundler 251 8,464 549 112 Web libraries and frameworks
Cloud9 97 9,485 64 293 Application software
Composer 35 7,363 629 254 Software Tools
Cucumber 8 566 15 382 Software Tools
Ember-JS 129 5,151 407 272 Web libraries and frameworks
Gollum 76 1,921 143 182 Non-web libraries and frameworks
Hammer 25 1,193 84 199 Web libraries and frameworks
BoilerPlate 12 469 48 266 Web libraries and frameworks
Heroku 52 353 10 292 Software Tools
Modernizr 27 2,392 220 382 Web libraries and frameworks
Mongoid 253 6,223 317 187 Non-web libraries and frameworks
Monodroid 2 1,462 61 391 Non-web libraries and frameworks
PDF-JS 43 9,663 228 398 Web libraries and frameworks
Scrapy 78 6,315 242 287 Non-web libraries and frameworks
Refinery 162 9,886 385 188 Software Tools
Salt 146 81,143 1,781 278 Software Tools
Scikit-Learn 2 4,456 17 344 Non-web libraries and frameworks
SimpleCV 5 2,625 69 389 Non-web libraries and frameworks
Hawkthorne 116 5,537 62 211 Software Tools
SocketRocket 10 494 67 198 Non-web libraries and frameworks

Table 1 summarizes the characteristics of the extracted software
projects in terms of (i) size, measured as number of public releases
issued and number of commits performed over their history, (ii) con-
tributors, and (iii) application domain, according to the taxonomy
proposed by Borges et al. [6].

Community Patterns. Table 2 overviews the community pat-
terns under investigation, along with a short description. They
come from existing literature and include various forms of organi-
zational structures. The choice of focusing on these patterns come
from the availability of an automated tool enabling their detection,
i.e., Yoshi [42]. In particular, this tool implements a two-step ap-
proach: given a Github repository, it mines commit history, issue
tracker, and contributor’s data in order to compute metrics that
characterize the structure of the community. For example, Yoshi
computes the overall engagement of developers, i.e., the amount
of time that the contributors actively spend in community-related
actions, or the level of formality of the decisional process exercised
or self-imposed on the community. In the second step, the tool
implements a decision tree that, on the basis of the measurements
previously computed, is able to classify the organizational pattern
implemented by a community, e.g., a formal or informal group.

It is important to highlight that the performance of Yoshi has
been empirically assessed [42], showing an accuracy close to 100%.
As such, the tool represents the ideal way to detect community
patterns in our study.

Community Smells. Regarding community smells, we focused
on four specific types such as:

Black Cloud. This smell arises when the community presents an
information overload due to lack of structured communications
or cooperation governance;

Bottleneck. In this case, one member interposes herself into every
formal interaction across two or more sub-communities with
little or no flexibility to introduce other parallel channels.

Splicing Community Patterns and Smells: A Preliminary Study Conference’17, July 2017, Washington, DC, USA

Table 2: Organizational structure types considered in our empirical study.

Name Description
Communities of practice (CoP) A CoP consists of collocated groups of people who share a concern, a set of problems, or a passion about a practice. Interactions are frequent, face-to-face,

collaborative (to help each other) and constructive (to increase mutual knowledge). This set of social processes and conditions is called situatedness [17]. An
example is the SRII community1 which gathers multiple CoPs (corporate and academic) into a single one, meeting physically to informally exchange best
practices in services science.

Informal Networks (IN) INs are loose networks of ties between individuals that happen to come informally in contact in the same context. Primary indicator is the high strength
of informal member ties. Finally, IN do not use governance practices [13]. An example in academia, is the informal and loosely coupled set of research
communities around a single topic (e.g., computer science) is a world-wide informal network.

Formal Networks (FN) FNs rigorously select and prescribe memberships, which are created and acknowledged by FN management. Direction is carried out according to corporate
strategy and its mission is to follow this strategy [40]. An example in software engineering is the OMG (Object Management Group): it is a formal network,
since the interaction dynamics and status of the members (i.e. the organizations which are part of OMG) are formal; also, the meeting participants (i.e. the
people that corporations send as representatives) are acknowledged formally by their corporate sponsors.

Informal Communities (IC) ICs reflect sets of people part of highly-dispersed organisation, with a common interest, often closely dependent on their practice. They interact informally
across unbound distances, frequently over a common history or culture (e.g. shared ideas, experience etc). The main difference they have with all communities
(with the exception of NoPs) is that their localisation is necessarily dispersed (e.g., contrarily to INs where networked interactions can also be in the same
timezone or physical location) so that the community can reach a wider audience [40]. Loosely-affiliated political movements (such as green-peace) are
examples of ICs: their members disseminate their vision (based on a common idea, which is the goal of the IC).

Networks of Practice (NoP) A NoP is a networked system of communication and collaboration that connects CoPs (which are localised). In principle anyone can join it without selection of
candidates (e.g. Open-Source forges are an instance of NoP). NoPs have the highest geodispersion. An unspoken requirement is expected IT literacy [35]. For
example, previous literature [4] discusses Socio-technical Networks in software engineering using the exact terms with which NoPs are defined in literature.

Workgroups (WG) WG are made of technical experts whose goals span a specific business area. WGs are always accompanied by a number of organisational sponsors and are
expected to generate tangible assets and benefits (i.e., Return-On-Investment). Fundamental attributes of WGs are collocation and the highest cohesion of
their members (e.g., long-time collaborators). For example, in software engineering, the IFIP WG 2.10 on software architecture2 is obviously a WG, since its
effort is planned and steady, with highly cohesive action of its members, as well as focused on pursuing the benefits of certain organisational sponsors (e.g.
UNESCO for IFIP).

Project-Teams (PT) PTs are fixed-term, problem-specific aggregations of people with complementary skills who work together to achieve a common purpose for which they are
accountable. They are enforced by their organisation and follow specific strategies or organisational guidelines (e.g. time-to-market, effectiveness, low-cost,
etc.). Their final goal is delivery of a product or service [40].

Formal Groups (FG) FGs are comprised of people which are explicitly grouped by corporations to act on (or by means of) them (e.g. governing employees or ease their job or
practice by grouping them in areas of interest). Each group has a single organisational goal, called mission (governing boards are groups of executives whose
mission is to devise and apply governance practices successfully). In comparison to Formal Networks, they seldom rely on networking technologies, on the
contrary, they are local in nature and are less formal since there are no explicit governance protocols employed other than the grouping mechanism and the
common goal. Examples of formal groups in software engineering are software taskforces, e.g. IEEE Open-Source Software Task Force3.

Social Networks (SN) SNs represent the emergent network of social ties spontaneously arising between individuals who share, either willingly or not, a practice or common interest.
Conversely, an unstructured network is (often by-design) not constrained by any design or structural tie (e.g., a common social practice) [47]. SNs act as a
gateway to communicating communities [13].

Organizational Silo. This smell appears when there are siloed
areas of the developer community that do not communicate,
except through one or two of their respective members;

Lone Wolf. Instances of this smell arise when the developer com-
munity has unsanctioned or defiant contributors who carry out
their work with little consideration of their peers, their decisions
and/or communication.
We focused on these community smells for multiple reasons. In

the first place, these specific smells have been shown by previous
research [32, 39] to be (1) among the most problematic community-
related issues to deal with and (2) a potential threat to the emergence
of technical debt. Secondly, these smells can be detected exploiting
an automated tool named CodeFace4Smells [44]. This is a fork
of CodeFace [24], a tool originally designed to extract coordina-
tion and communication graphs mapping the developer’s relations
within a community. CodeFace4Smells augments these graphs
with detection rules able to identify the four community smells
taken into account. As an example, the identification pattern for
LoneWolf is based on the detection of development collaborations
between two community members that have intermittent commu-
nication counterparts or feature communication by means of an
external “intruder", i.e., not involved in the collaboration.

Also for this tool, it is important to comment on its accuracy.
CodeFace4Smells has been empirically evaluated [39, 44] bymeans
of surveys and/or semi-structured interviews with both the original
industrial and open-source practitioners belonging to 60 communi-
ties. In particular, the authors of the tool showed practitioners the

results obtained when running CodeFace4Smells on their commu-
nities, asking for confirmation. As an outcome, they all reported
the validity and usefulness of the tool, without pointing out ad-
ditional problematic situations occurred in their communities. In
other words, according to developers, the community smells out-
put by the tool are all true positives; as for false negatives, if they
exist, these were not pointed out by original developers. The results
achieved by the tool in previous studies [39, 44] make us confident
of the high reliability of the tool and its suitability for our study.

Data Collection and Analysis. To address our RQ and evalu-
ate the relationship between community patterns and smells we
performed a three step data collection and analysis:

(1) Identification of community patterns;
(2) Identification of community smells;
(3) Association rule discovery;
To achieve the first step, we exploited Yoshi to discover the

community patterns that affect the considered software projects.
This was conducted as a release-level analysis. The releases were
directly extracted from the Github repository of each considered
project. We performed such an evolutionary analysis because in
this way we could have a much richer and meaningful dataset if
compared to the only 25 data points represented by the most recent
snapshots of the communities considered.

Then, we detected the community smells that affect the con-
sidered software projects, exploiting the aforementioned Code-
Face4Smell. Once we have extracted the list of community smells

Conference’17, July 2017, Washington, DC, USA De Stefano et al.

contained in each of the releases of the projects considered, we
mined association rules [1] for detecting which community pat-
terns and smells co-occur. In particular, association rule discovery
is an unsupervised learning technique used for local pattern detec-
tion highlighting attribute value conditions that occur together in
a given dataset [1]—in our case, the dataset contained the set of
community patterns and smells discovered in each release of the
considered projects. An association rule Rlef t → Rr iдht implies
that, if a certain community pattern occurs in a project, then a com-
munity smell should occur as well. The strength of an association
rule is determined by two metrics, i.e., support and confidence [1]:

support =
|Rlef t ∪ Rr iдht |

T
(1)

conf idence =
|Rlef t ∪ Rr iдht |

Rlef t
(2)

where T is the total number of co-occurrences between commu-
nity patterns and smells in our dataset. To implement association
rules, we exploited the well-known aPriori algorithm [1], which
is available in the R toolkit.4 In Section 3 we report and discuss the
association rules having a support higher than 0.6 and confidence
higher than 0.8 [1]. This focus is necessary to produce and report
only the association rules having the highest strength.

Furthermore, we computed the lift metric, which measures the
ability of a rule to correctly identify a relationship with respect
to a random choice model [1]. A lift value higher than 1 indicates
that the left-hand and right-hand operators of an association rule
appear together more often than expected, thus meaning that the
occurrence of the left-hand operator often implies the co-presence
of the right-hand operator. To understand the statistically signifi-
cance of the rules found, we employed Fisher’s exact test [16] on
the lift value achieved by the mined association rules: specifically,
the test measures the significance of the deviation between the
association rule model and the random choice models compared
when computing the lift. The statistical significance is obtained in
case of ρ-value lower than 0.05.

3 RESULTS AND DISCUSSION
Table 3 reports the association rules, grouped by community pat-
tern, extracted after the application of the aPriori algorithm [1]. In
this section, we also provide some qualitative analysis of the asso-
ciation rules aimed at further investigating the results and possibly
understanding whether the relation between community patterns
and smells is causal: to this aim, however, we deeper analyzed only
a subset of the systems contained in our dataset. Specifically, we
focused on the two largest projects, namely Arduino and Salt.

A first consideration is related to the fact that, when not filtering
association rules by support and confidence, we found relationships
between smells and all the communities identified by Yoshi, with
the exception of Formal Networks. Likely, this is due to the rigor-
ousness used to select members in this community type: indeed,
only certified and acknowledged developers can become members
of these types of communities, which typically operate under strict

4https://www.rdocumentation.org/packages/arules/versions/1.6-4/topics/apriori.

regulatory contribution policies and codes of conduct [45]. As a con-
sequence, developers within the community need to follow strict
code of conducts to continue contributing and this is known to ad-
dress a number of known organisational issues but also manifesting
unexpected ones such as higher turnover [45]. In our case, think
of the release 1.6.0 of Arduino, where Yoshi identifies a formal
network; in this context, the developers adopted a code of conduct5
to avoid unfriendly behavior among members. This result seems
to confirm previous findings indicating that the usage of code of
conducts actually supports the activity of software communities by
creating a friendly and inclusive environment [45].

On the other hand, other community types are quite prone to be
smelly. In our dataset, Formal Groups are strictly connected with
two types of community smells, i.e., Bottleneck and Lone Wolf. To
discover the reasons behind the relationship, we manually analyzed
the sources of communications the systems rely on, i.e., theGitHub
issue trackers and the mailing lists. Basically, formal groups are
formed by people which are explicitly grouped to reach single spe-
cific missions. The problems arise in case two groups of the network
need to communicate: in these cases it is usual that such groups
communicate by means of a representative member, thus naturally
leading to the introduction of a Bottleneck smell instance, which
appears when there is an overhead due to members interposing
themselves into every formal interaction between two groups. An
interesting example appeared in the Arduino community, where
the communications related to programming questions6 are often
conducted by two specific members, i.e., Member A7 (present in
2,675 forum posts over the total 3,410) and Member B (present in
2,155 forum posts over the total 3,410). At the same time, the pecu-
liarities of the community type makes it more prone to be affected
by the Lone Wolf smell, which represents an extreme case of for-
mal group, i.e., when a small set of developers perform their tasks
without caring the decisions made within the group.

Besides having a high support and confidence values, the rules
found also have a lift higher than 1, confirming that the two com-
munity smells often appear within formal groups. Note that the
high lift values are also statistically significant as the Fisher’s exact
test quantified the p −values as lower than 0.05.

The relationships between the Informal Communities and the
Organizational Silo Effect and Lone Wolf smells were also quite
expected. In this case, an informal community refers to highly-
dispersed organizations having a common goal. The high dispersion
of developers makes the community intrinsically more prone to be
affected by the Organizational Silo Effect, since it may happen that
some of the developers do not communicate with others causing
poor social connections among the community members.

The high dispersion characteristic also explains the relationship
with the LoneWolf smell: as previously explained, this smell appears
when a single developer or a small group of community members
start working in isolation without considering the decisions made
within the community. Of course, a dispersed environment without
a well defined structure is more prone to such behavior because
developers cannot physically meet each other daily. The results

5http://forum.arduino.cc/index.php?topic=148996.0
6http://forum.arduino.cc/index.php?board=4.0
7Names of developers are anonymised to preserve their privacy

Splicing Community Patterns and Smells: A Preliminary Study Conference’17, July 2017, Washington, DC, USA

Table 3: Association rules between community patterns and smells.

Rule Support Confidence Lift p-value
Formal Group→ Bottleneck 0.77 0.91 1.54 0.033
Formal Group→ Lone Wolf 0.73 0.88 1.26 0.013
Informal Community→ Organisational Silo Effect 0.74 0.94 1.69 0.011
Informal Community→ Lone Wolf 0.68 0.82 1.63 0.022
Informal Network → Organisational Silo Effect 0.71 0.85 1.46 0.024
Informal Network → Black Cloud 0.69 0.83 1.55 0.043
Network of Practice→ Bottleneck 0.76 0.89 1.59 0.032

were also confirmedwhen looking at the lift value which was higher
than 1, being statistically significant (p-values lower than 0.05).

As for Informal Networks, it is worth remarking that this commu-
nity type does not use governance practices. As such, it is naturally
prone to the appearance of a Black-cloud instance, i.e., information
overload caused by the lack of structured communication. At the
same time, lack of governance also tends to make developers more
independent from the community, possibly leading to the intro-
duction of a Lone Wolf smell instance. Also in these cases, the lift
values were higher than one while the p-values lower than 0.05: for
this reason, we can conclude that the relationships discovered are
meaningful and statistically significant.

Finally, we found an unexpected connection between Networks
of Practice and the Bottleneck smell. By definition, a network of
practice is a community that connects communities of practice, i.e.,
collocated groups in which interactions are frequent and collabo-
rative. While such communities should theoretically be effective
in communication, they are often affected by a Bottleneck due to
developers who act as middleman between two groups. For exam-
ple, in the version v2015.5.0 of the Salt project a single developer
managed most of the communications performed by developers, be-
coming in practice a bottleneck. Interestingly, the lift value reached
1.59 with p-value = 0.032, confirming that the relationship is strong
and statistically significant.

To broaden the scope of the discussion, the results achieved show
that different community patterns are more prone to be affected
by different community smells: this practically means that the in-
formation extracted by Yoshi about the community pattern can be
exploited by practitioners as a useful source to diagnose and under-
stand underlying social, socio-technical as well as organizational
issues across their community.

Finding 1. Different community patterns relate to different
community smells. The reasons behind the presence of smells
are strongly related to the characteristics and peculiarities of
the community patterns.

4 THREATS TO VALIDITY
In this section we discuss factors that might have influenced our
study and be a threat to its validity, focusing on threats to construct,
conclusion and external validity.

4.1 Threats to Construct Validity
Threats to construct validity are related to the relationships between
theory and observation. Generally, this threat refers to imprecision
in the measurements performed. In our case, this impacts all the
gathered data, as it might be “biased” by the imprecision of the
exploited tools. However, both Yoshi and CodeFace4Smells were
previously validated [24, 37, 41, 42], showing good detection ca-
pabilities. This increases the reliability of our study and make us
confident of the accuracy of the collected data.

4.2 Threats to Conclusion Validity
The main threat in this category is the use of the aPriori algorithm
to discover the relationships between the observed phenomena. On
the one hand, this technique has beenwidely adopted by researchers
to study hidden relations between two phenomena (e.g., [30, 31, 48]).
On the other hand, we only considered and discussed the strongest
rules, namely the most reliable ones which had high support and
confidence. In addition, we also closely looked at two systems of
the dataset with the aim of providing qualitative examples and a
rationale that explains the rules discovered.

4.3 Threats to External Validity
The main issue concerned with the generalization of the results is
the number of software communities analyzed in the study. While
a set of 25 systems is not a statistically significant sample of the
most active projects present in Github, it is important to remark
that the main goal of our paper was to discover a relation between
community patterns and smells, and not a large-scale study of open
source projects properties. Furthermore, we were able to perform
finer observations looking at some specific projects of our dataset,
which were studied closely. For this reason, we believe that the
dataset can be considered large enough for answering our research
question. In addition, to make our findings as generalizable as
possible we took into account a variety of communities having
different characteristics, scope, size, and coming from different
application domains. We plan to extend our investigation on a
larger set of communities.

The choice of focusing on certain community patterns and smells
might be a threat to the generalization of the results as well. While
further replications of our work would be desirable and already part
of our future research agenda, in our context we had to limit the
analysis to those patterns and smells because of the tools available.

Conference’17, July 2017, Washington, DC, USA De Stefano et al.

5 RELATEDWORK
The presence of community smells reflects both the health of the
organization as well as the quality of the software produced (and
also its life cycle) [33]. So, in the context of our work, we had to
deal with both software engineering and organizational research. In
this section, we outline related work in (i) establishing, measuring,
tracking or otherwise improving the health or status of software
engineering communities and (ii) empirically assessing the effects
of community smells on social and technical aspects of source code.

Software communities health. On the software engineering side
of the topic spectrum, several works provided fundamental insights
into the problem, including the widely known socio-technical con-
gruence [7] research, but without ever offering a theoretically-
and empirically-established quality model. For instance,research
community concentrated on establishing the link between several
organizational structure qualities (e.g., hidden-subcontractors in
the organizational structure [2, 3], awareness [5, 29], distance and
coordination [20, 21], etc.) with respect to software quality [43].

Jansen [23] proposed a framework for open-source ecosystems
health, based on the study of the literature; in particular, the pro-
posed framework was focused on parameters for ecosystem health
without considers organizational structures or anti-patterns emerg-
ing thereto. Similarly, the work of Crowston and Howison [14]
offered anecdotal evidence of the need for empirically-proven qual-
ity models for open-source communities. They argued that informal
open-source communities are healthier since they aremore engaged.
Our work could be seen as a second step of their proposals, since
we propose an empirically-grounded catalog of strategies that prac-
titioners can be use successfully to mitigate their encounters with
specific community smells.

At the other end of the spectrum, organization and social-network
research proposed a plethora of organizational anti-patterns [34,
36], as well as (a few) best practices to address them [22, 46], with
even fewer exceptions for open-source software communities [39].
For example, Giatsidis et al. [19] elaborated on collaboration struc-
tures with high-edge social network analysis. They concluded that
organizationally-specific k-structured networks are more efficient
than others, so there exists an organizational structure which best
fits a pre-specified purpose. Similarly, the same authors investigated
on the impact of communication, collaboration and cooperation
over community structure qualities [18]. Insights from both papers
would offer a valuable basis for argument over organizational struc-
ture research in software engineering. However, in our work, we
face the problem asking practitioners to share us their knowledge
and experience about sub-optimal situations; thus might lead to
achieving more practical insights.

Research on community smells. In the last years, community
smells have begun to receive particular attention [32, 44]; one of
the motivations resides in the development of the tool able to detect
them called CodeFace by Joblin et al. [25]. Indeed, the aforemen-
tioned tool was first augmented with heuristics capable of detecting
community smells [44] and then adopted to investigate the impact
of community smells over code smells [32]. In the first place, Tam-
burri et al. [44] assessed the detection capabilities of the proposed

augmented tool, named CodeFace4Smells by surveying practition-
ers, who confirmed that the results given by the tool are accurate
and meaningful. Also, the authors investigated (i) the diffuseness
of four community smells in open-source and (ii) their relation
with known socio-technical factors: their results provided evidence
that smells are highly diffused and can be foreseen by taking cer-
tain socio-technical indicators under control. At the same time,
Palomba et al. [32] discovered that community smells represent
top factors preventing from refactoring; moreover, they are key
features when it comes to predicting the severity of specific code
smells. Similar works have concentrated on establishing the impact
of community smells on other dimensions of software engineering
(e.g., architecture debt [28] and organization structure types [43]).

On another note, Catolino et al. [12] analyzed that in certain cases
the emergence of community smells may be potentially reduced by
increasing gender diversity. In their extended work [9], however,
they found how practitioners do not perceive gender diversity
and presence of women in software teams as relevant factors to
avoid community smells, while they believe that other aspects, like
developer’s experience or team size, may make a community more
prone to be affected by smells.

The works presented in this section is complementary to those
discussed above, as it does not focus on the emergence of commu-
nity smells or their impact, but rather on how practitioners deal
with them and, particularly, on the strategies employed in prac-
tice to get rid of community smells. Nevertheless, it is important
to point out that Tamburri et al. [44] have developed a mining
study in which they assessed the diffuseness of community smells
in open-source projects; our analysis of the perceived relevance
of community smells can nicely triangulate the findings of Tam-
burri et al. [44] and potentially show preliminary insights into the
awareness of practitioners with respect to community smells.

6 CONCLUSION
In this paper, we studied the relation between community patterns
and community smells in open-source software projects. We identi-
fied community patterns in a set of 25 open source projects, hosted
on Github, exploiting Yoshi, while we detected community smells
that affect the same set of projects using CodeFace4Smells. Fi-
nally, we exploit association rule mining, particularly the aPriori
algorithm, to discover relations between them.

The key findings of the study show that specific communities
smells may arise depending on the peculiarities of the community
organization. Our results may be useful to prevent the occurrence
of these smells, if the community is aware that it is following a
certain pattern. Our future research agenda includes a replication of
our experiments on a larger dataset. Moreover, we plan to further
analyze the properties of community patterns and the possible
impact that organizational decisions have on social debt.

REFERENCES
[1] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. 1993. Mining Association

Rules Between Sets of Items in Large Databases. SIGMOD Rec. 22, 2 (June 1993),
207–216. https://doi.org/10.1145/170036.170072

[2] Vito Albino and A Claudio Garavelli. 1998. A neural network application to
subcontractor rating in construction firms. International Journal of Project Man-
agement 16, 1 (1998), 9–14.

Splicing Community Patterns and Smells: A Preliminary Study Conference’17, July 2017, Washington, DC, USA

[3] David P Baron and David Besanko. 1992. Information, control, and organizational
structure. Journal of Economics & Management Strategy 1, 2 (1992), 237–275.

[4] Christian Bird, Nachiappan Nagappan, Harald Gall, Brendan Murphy, and
Premkumar Devanbu. 2009. Putting It All Together: Using Socio-technical Net-
works to Predict Failures. In Proceedings of the 2009 20th International Symposium
on Software Reliability Engineering (ISSRE ’09). IEEE Computer Society, Washing-
ton, DC, USA, 109–119. https://doi.org/10.1109/ISSRE.2009.17

[5] James M Bloodgood and JL Morrow Jr. 2003. Strategic organizational change:
exploring the roles of environmental structure, internal conscious awareness and
knowledge. Journal of Management Studies 40, 7 (2003), 1761–1782.

[6] Hudson Borges, Andre Hora, and Marco Tulio Valente. 2016. Understanding the
Factors that Impact the Popularity of GitHub Repositories.. In IEEE International
Conference on Software Maintenance and Evolution. IEEE, –, 334–344.

[7] Marcelo Cataldo, James D. Herbsleb, and Kathleen M. Carley. 2008. Socio-
technical congruence: a framework for assessing the impact of technical and
work dependencies on software development productivity. In Empirical software
engineering and measurement (Kaiserslautern, Germany). ACM, New York, NY,
USA, 2–11. https://doi.org/10.1145/1414004.1414008

[8] Marcelo Cataldo, James D. Herbsleb, and Kathleen M. Carley. 2008. Socio-
technical congruence: a framework for assessing the impact of technical and work
dependencies on software development productivity. In ESEM ’08: Proceedings of
the Second ACM-IEEE international symposium on Empirical software engineering
and measurement (Kaiserslautern, Germany). ACM, New York, NY, USA, 2–11.
https://doi.org/10.1145/1414004.1414008

[9] Gemma Catolino, Fabio Palomba, Damian Tamburri, Alexander Serebrenik, and
Filomena Ferrucci. 2019. Gender Diversity and Community Smells: Insights from
the Trenches. IEEE Software (2019).

[10] Gemma Catolino, Fabio Palomba, and Damian A Tamburri. [n.d.]. The Secret Life
of Software Communities: What we know and What we Don’t know. ([n. d.]).

[11] Gemma Catolino, Fabio Palomba, Damian A Tamburri, Alexander Serebrenik,
and Filomena Ferrucci. 2019. Gender diversity and community smells: insights
from the trenches. IEEE Software 37, 1 (2019), 10–16.

[12] Gemma Catolino, Fabio Palomba, Damian A Tamburri, Alexander Serebrenik,
and Filomena Ferrucci. 2019. Gender diversity and women in software teams:
How do they affect community smells?. In Proceedings of the 41st International
Conference on Software Engineering: Software Engineering in Society. IEEE Press,
11–20.

[13] Rob Cross, Jeanne Liedtka, and Leigh Weiss. 2005. A Practical Guide to Social
Networks. Harvard Business Review (2005), –.

[14] Kevin Crowston and James Howison. 2005. The social structure of free and open
source software development. First Monday 10, 2 (2005).

[15] Davide Falessi, Wyatt Smith, and Alexander Serebrenik. 2017. STRESS: A Semi-
Automated, Fully Replicable Approach for Project Selection.. In ESEM. IEEE,
151–156. http://dblp.uni-trier.de/db/conf/esem/esem2017.html#FalessiSS17

[16] Ronald Aylmer Fisher. 1922. On the Interpretation of chi2 from Contingency
Tables, and the Calculation of P. Journal of the Royal Statistical Society 85, 1 (Jan.
1922), 87–94. https://doi.org/10.2307/2340521

[17] Shaun Gallagher. 2006. Introduction: The Arts and Sciences of the Situated Body.
Janus Head 9, 2 (2006), 1–2.

[18] Christos Giatsidis, Dimitrios M Thilikos, and Michalis Vazirgiannis. 2011. Evalu-
ating cooperation in communities with the k-core structure. In 2011 International
conference on advances in social networks analysis and mining. IEEE, 87–93.

[19] Christos Giatsidis, Dimitrios M Thilikos, andMichalis Vazirgiannis. 2013. D-cores:
measuring collaboration of directed graphs based on degeneracy. Knowledge and
information systems 35, 2 (2013), 311–343.

[20] Rebecca E Grinter, James D Herbsleb, and Dewayne E Perry. 1999. The geog-
raphy of coordination: dealing with distance in R&D work. In Proceedings of
the international ACM SIGGROUP conference on Supporting group work. ACM,
306–315.

[21] James D Herbsleb and Rebecca E Grinter. 1999. Architectures, coordination, and
distance: Conway’s law and beyond. IEEE software 16, 5 (1999), 63–70.

[22] Kei Ito, Hironori Washizaki, and Yoshiaki Fukazawa. 2016. Handover anti-
patterns. In Proceedings of the 5th Asian Conference on Pattern Language of Pro-
grams (Asian PLoP 2016), Taipei, Taiwan.

[23] Slinger Jansen. 2014. Measuring the health of open source software ecosystems:
Beyond the scope of project health. Information and Software Technology 56, 11
(2014), 1508–1519.

[24] Mitchell Joblin, Wolfgang Mauerer, Sven Apel, Janet Siegmund, and Dirk Riehle.
2015. From Developer Networks to Verified Communities: A Fine-Grained Ap-
proach.. In Proceedings of the 37th International Conference on Software Engineering
(ICSE 2015). ACM Press, Piscataway (NY), US, 563–573. https://doi.org/10.1109/
ICSE.2015.73

[25] Mitchell Joblin, Wolfgang Mauerer, Sven Apel, Janet Siegmund, and Dirk Riehle.
2015. From Developer Networks to Verified Communities: A Fine-grained Ap-
proach. In Proceedings of the 37th International Conference on Software Engineering
- Volume 1 (Florence, Italy) (ICSE ’15). IEEE Press, Piscataway, NJ, USA, 563–573.
http://dl.acm.org/citation.cfm?id=2818754.2818824

[26] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M.
Germán, and Daniela E. Damian. 2016. An in-depth study of the promises and

perils of mining GitHub. Empirical Software Engineering 21, 5 (2016), 2035–2071.
http://dblp.uni-trier.de/db/journals/ese/ese21.html#KalliamvakouGBS16

[27] Irwin Kwan, Adrian Schroter, and Daniela Damian. 2011. Does Socio-Technical
Congruence Have an Effect on Software Build Success? A Study of Coordination
in a Software Project. IEEE Trans. Softw. Eng. 37, 3 (May 2011), 307–324. https:
//doi.org/10.1109/TSE.2011.29

[28] Antonio Martini and Jan Bosch. 2017. Revealing Social Debt with the CAFFEA
Framework: An Antidote to Architectural Debt.. In ICSA Workshops. IEEE Com-
puter Society, 179–181. http://dblp.uni-trier.de/db/conf/icsa/icsaw2017.html#
MartiniB17

[29] AHJ Oomes. 2004. Organization awareness in crisis management. In Proceed-
ings of the international workshop on information systems on crisis response and
management (ISCRAM).

[30] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto Fasano, Rocco
Oliveto, and Andrea De Lucia. 2018. A large-scale empirical study on the lifecycle
of code smell co-occurrences. Information and Software Technology 99 (2018),
1–10.

[31] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, D. Poshyvanyk, and A. De Lucia.
2015. Mining Version Histories for Detecting Code Smells. IEEE Transactions
on Software Engineering 41, 5 (May 2015), 462–489. https://doi.org/10.1109/TSE.
2014.2372760

[32] Fabio Palomba, Damian Andrew Andrew Tamburri, Francesca Arcelli Fontana,
Rocco Oliveto, Andy Zaidman, and Alexander Serebrenik. 2018. Beyond technical
aspects: How do community smells influence the intensity of code smells? IEEE
Transactions on Software Engineering (2018).

[33] Fabio Palomba, Marco Zanoni, Francesca Arcelli Fontana, Andrea De Lucia, and
Rocco Oliveto. 2016. Smells like teen spirit: Improving bug prediction perfor-
mance using the intensity of code smells. In 2016 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE, 244–255.

[34] Anne Persson and Janis Stirna. 2006. How to transfer a knowledge management
approach to an organization–a set of patterns and anti-patterns. In International
Conference on Practical Aspects of Knowledge Management. Springer, 243–252.

[35] K. Ruikar, L. Koskela, and M. Sexton. 2009. Communities of practice in construc-
tion case study organisations: Questions and insights. Construction Innovation 9,
4 (2009), 434–. http://proquest.umi.com/pqdweb?did=1920022811&Fmt=7&
amp;clientId=4574&RQT=309&VName=PQD

[36] Janis Stirna and Anne Persson. 2009. Anti-patterns as a means of focusing on
critical quality aspects in enterprise modeling. In Enterprise, Business-Process and
Information Systems Modeling. Springer, 407–418.

[37] Damian A. Tamburri, Rick Kazman, and Hamed Fahimi. 2016. The Architect’s
Role in Community Shepherding. IEEE Software 33, 6 (2016), 70–79.

[38] Damian A Tamburri, Philippe Kruchten, Patricia Lago, and Hans van Vliet. 2013.
What is social debt in software engineering?. In Cooperative and Human Aspects
of Software Engineering (CHASE), 2013 6th International Workshop on. 93–96.
https://doi.org/10.1109/CHASE.2013.6614739

[39] Damian Andrew Tamburri, Philippe Kruchten, Patricia Lago, and Hans van Vliet.
2015. Social debt in software engineering: insights from industry. J. Internet
Services and Applications 6, 1 (2015), 10:1–10:17. http://dblp.uni-trier.de/db/
journals/jisa/jisa6.html#TamburriKLV15

[40] Damian Andrew Tamburri, Patricia Lago, and Hans van Vliet. 2013. Organiza-
tional social structures for software engineering. ACM Comput. Surv. 46, 1 (2013),
3.

[41] D. A. Tamburri and E. D. Nitto. 2015. When Software Architecture Leads to Social
Debt. In 2015 12th Working IEEE/IFIP Conference on Software Architecture. ACM
Press, Piscataway (NY), US, 61–64. https://doi.org/10.1109/WICSA.2015.16

[42] Damian Andrew Tamburri, Fabio Palomba, Alexander Serebrenik, and Andy
Zaidman. 2018. Discovering community patterns in open-source: a systematic
approach and its evaluation. Empirical Software Engineering 24 (2018), 1369–1417.

[43] Damian A Tamburri, Fabio Palomba, Alexander Serebrenik, and Andy Zaidman.
2019. Discovering community patterns in open-source: A systematic approach
and its evaluation. Empirical Software Engineering 24, 3 (2019), 1369–1417.

[44] Damian Andrew Andrew Tamburri, Fabio Palomba, and Rick Kazman. 2019.
Exploring Community Smells in Open-Source: An Automated Approach. IEEE
Transactions on Software Engineering (2019).

[45] P. Tourani, B. Adams, and A. Serebrenik. 2017. Code of conduct in open source
projects. In 2017 IEEE 24th International Conference on Software Analysis, Evolution
and Reengineering (SANER). ACM, Piscataway (NY), US., 24–33. https://doi.org/
10.1109/SANER.2017.7884606

[46] Ariel Tseitlin. 2013. The Antifragile Organization. Commun. ACM 56, 8 (2013),
40–44.

[47] Jan Zich, Yoshiharu Kohayakawa, Vojtech Rödl, and V. Sunderam. 2008. Jump-
Net: Improving Connectivity and Robustness in Unstructured P2P Networks by
Randomness. Internet Mathematics 5, 3 (2008), 227–250. http://dblp.uni-trier.de/
db/journals/im/im5.html#ZichKRS08

[48] Thomas Zimmermann, Andreas Zeller, Peter Weissgerber, and Stephan Diehl.
2005. Mining version histories to guide software changes. IEEE Transactions on
Software Engineering 31, 6 (2005), 429–445.

